Thursday, October 3, 2013

And the Truth Comes Limping After

"A lie will go around the world while the truth is pulling its boots on."
                                                                                                   - Mark Twain

That's always been one of my favorite Mark Twain quotations. It's just so true. Except...it's not. It's a true observation, to be sure, but Mr. Twain never actually said it. A guy named C.H. Spurgeon did, in 1859. And he borrowed it from other sources, which can be traced back to 1710, when Jonathan Swift said, "Falsehood flies, and the truth comes limping after it.”

Here we have a delectable irony--a quotation about how fast lies can spread is itself a lie; one that has indeed spread around the world. It proves how true it is with its own falsehood. Or...something. 

Anyway, I got an amazing lesson today about how true it really is. As I write, it's day three of the government shutdown over the Affordable Care Act (Obamacare). In a Facebook discussion today about Obamacare, someone illustrated their objections to it by linking to an essay by a Louisiana attorney named Michael Connelly called "The Truth About the Health Care Bills." Connelly lists several reasons he believes House Bill 3200 is unconstitutional. The only problem is, House Bill 3200 is not the Affordable Care Act. It's a different piece of legislation altogether, and it never passed. I don't know whether Mr. Connelly's analysis is correct, but that's beside the point, since it never passed anyway. It certainly shouldn't be spread as if it were a critique of Obamacare. 

But that's exactly what was happening. When I looked at the Facebook link where Mr. Connelly's essay had been posted, it had been shared over 4,000 times since the day before...by people who thought it was about Obamacare. Many of them shared it with comments like, "Wake up people! Obamacare is taking away all our rights!!!" 

Whether they are right or wrong isn't the issue here. The issue is that they were accidentally spreading misinformation, and spreading it fast--sharing the link every few seconds. 

I watched the number of shares climb to 5,000, and then 6,000. Finally, I asked to join the Facebook group it had appeared on, called Repeal ObamaCare, so I could leave a comment on the post. I was accepted within 20 minutes, and posted a link to the Snopes.com article showing that the essay was not about Obamacare. 

And then, nothing happened. People just kept on sharing it. In the 40 minutes after I posted the Snopes link, nearly 1,000 people shared the essay. Finally, the guy who originally posted the link said he would take it down, and he did, just before it hit 7,000 shares. 

It was a small victory, but I'm not going to lie--it was sweet. Tilt at enough windmills, and you might knock a small one over.

Of course, as he said: "It's out there now." Seven thousand people saw that link and shared it without ever checking to see if it was legitimate. They didn't know enough about Obamacare to realize the essay wasn't about Obamacare, but they were sure they were against it, and that essay explained exactly why! Except it didn't.  But that didn't matter...it kept right on spreading. And for thousands of people, I'm sure it confirmed what they already believed in the first place.

As I said, though, my point here isn't whether Obamacare is good or bad. My point is about people's willingness to spread what they want to hear, without taking just a few seconds to see if it's true. I'm not sure the majority of people even care whether it's true, as long as it supports their point of view. I hope I'm being too cynical on that score. 

One thing is certain, though, and that's how true the old adage about the speed of lies is, whoever said it. These days it's more true than ever. While the truth is pulling its boots on today, a lie can circle the world hundreds of times per minute, multiplying as it goes. The only way to prevent that is to actually care what's true--to prefer a truth we don't like to a lie we do. Lies are swift, tough, and almost impossible to kill.  The truth is fragile, plodding, and utterly precious. It needs all the help it can get. 

Wednesday, September 25, 2013

Thorn Trees, Avocados, and VLS's (Very Large Sloths)

Photo by Greg Hume, Wikimedia Commons
This weekend I went for a walk with two of my friends through a swamp outside New Orleans. We saw plenty of waterbirds, three young alligators, some burly swamp rabbits, and a total of seven snakes. But what impressed my companions most was a honey locust tree we came across. Those are fairly common where I'm from in Arkansas, but they aren't common here, and they had never seen one before. Hearing them talk about it, I started seeing it with new eyes. The honey locust really is a stunning tree, with its clusters of icepick-sized thorns along its limbs and trunk. It's clearly not a tree to be trifled with.

Then my friends asked a question that I had never thought to ask: why does need such huge thorns? What assailant is it protecting itself from? Is it just paranoid?

None of us had any ideas, so we kept walking and forgot about it. But the next night, in one of those weird little jolts of serendipity, I stumbled across a possible answer. I was leafing through a picture book about natural history, and saw the following passage in the section on plants: "Species with fleshy fruits use animals to disperse their seeds: many of them are swallowed whole and then scattered by birds. In prehistoric times, wild avocados may have been dispersed by giant ground sloths."

That's right, giant ground sloths. They really existed. One of the most jaw-dropping things I have ever seen is a skeleton of one of these in the Smithsonian. I had seen the dinosaurs and pterodactyls skeletons and been duly impressed, but then, in the Ice Age hall, I came across the towering skeleton of Eremotherium; one of the largest of the ground sloths. The thing is just gigantic--as big as an elephant standing on its hind legs. You could build a small tree house between its pelvis and its ribcage...and it's a sloth. I stood there and stared at it like I was three years old.

Photo by Postdlf, Wikimedia Commons
Ground sloths were superficially built like long-armed bears, and like bears, they could stand on their hind legs. Some of them could reach nearly 20 feet into the trees to browse on buds, leaves, and fruit. And some of these fruits may have co-evolved with ground sloths and other big ice age mammals, as a way to disperse their seeds.

Plants can do many things, but what they can't usually do is get up and move around. That means they have to find ways to reproduce while being stuck in the same spot all their lives. They have to get their pollen to each other somehow, and then they have to scatter their seeds so that their offspring won't grow up right on top of them. Pollen is mostly spread by the wind, or by bribing or tricking flying animals like insects, hummingbirds, and bats.

Plants scatter their seeds in equally inventive ways. Dandelions and cottonwoods send them aloft on little cottony parachutes. Maple and sycamore seeds whirl like helicopter blades as the wind catches them, and the Javan cucumber's seed has wings like a hang glider. The seeds we call burs hitch rides on animals, and on our pant legs. Coconuts disperse by floating in the sea, sometimes drifting hundreds of miles from their parent plant. Some fruits dry up and explode. Impatiens are a familiar example--their fruit may burst if you touch it, which is why they are also called Touch-Me-Nots. But even more impressive is the Sandbox Tree, AKA the Dynamite Tree. Its fruits explode with a deafening blast, launching seeds over 150 feet away.

Of course, many fruits have evolved to entice animals to eat them. Plants don't put all that energy into producing sweet, tasty fruit because they have benevolent spirits. They do it to spread their seeds. Some seeds can't even germinate unless they've been through the gut of an animal. This often weakens their tough coating, and as a bonus, the seeds end their intestinal journey in a little dollop of fertilizer on the ground.

And that brings us back to avocados. Avocado seeds are too big for most modern creatures to swallow regularly, but huge prehistoric creatures like ground sloths might have gulped them down without even thinking about it, and then deposited them later in their poop, the way birds deposit blackberry seeds. Today, the ground sloths are gone, and avocados might have dwindled away too if people hadn't come along and started cultivating them. Perhaps that's only fair, since we may be what killed off the ground sloths in the first place, along with a host of other Pleistocene creatures of the Americas, including giant bison, mammoths, mastodons, and four-tusked gompotheres; as well as the predators who relied on them--massive dire wolves, sabertoothed cats, and 1800-pound short-faced bears. The fauna of the Americas was as impressive as the African savanna until a few thousand years ago--right around the time the first humans seem to have arrived. Of course, the climate got a lot warmer at the same time, so the jury hasn't declared humans guilty beyond a reasonable doubt. But they're eyeing us pretty suspiciously.

Anyway, it may be that avocados weren't the only plants left without partners by the extinction of the big mammals. Another tree I grew up around, the Osage orange, may have co-evolved with mammoths, mastodons, and their relatives. These trees once had a wide range across North America, but today they are confined mostly to Texas, Oklahoma, and Arkansas. Some biologists think this may be because their giant dispersers disappeared. In most places, Osage orange fruits simply pile up and rot under the tree. Most modern native animals ignore them, but horses eat and distribute them now. That has a certain symmetry, since Osage oranges would have evolved with native horses of the Americas, which went extinct at the end of the ice age. The reintroduction of horses from Europe may have reintroduced two old friends.

And what about the honey locust, with its menacing spikes? It's another tree that may have co-evolved with giant mammals. As prickly as it is, it's called the honey locust for good reason--its seed pods are filled with a sweet-tasting pulp that probably evolved to attract large animals, who would eat the seeds along with the pulp. If the seed pods aren't eaten, they just fall to the ground, and the seeds inside will be destroyed by insects. But if they get eaten by a large herbivore, they will pass through its gut unharmed. This is actually what happens with relatives of the honey locusts in Africa, the acacias. Elephants help disperse some acacia seeds by eating the pods. The insects attacking the seeds are killed, but the seeds do just fine; and are actually much more likely to germinate if they've made a trip through pachyderm innards. But elephants and other large mammals can be hard on acacias, too--stripping their bark, pushing them over, and browsing too many of their leaves. That's why acacias have thorns--to deter this sort of thing. Their cousins, honey locusts, have even bigger thorns. And maybe that's the answer to my friends' question. Why does that tree we looked at just this weekend have such huge thorns? Maybe it's still trying to protect itself from giant creatures that disappeared thousands of years ago. Those great beasts may seem almost mythical to us, but they were very real, and museums are full of the bones to prove it. They were certainly real to the honey locust, and it still has its thorny daggers ready, in case they ever return.

_______________________________________________


Anachronistic Fruits and the Ghosts Who Haunt Them / Connie Barlowe

The Trees that Miss the Mammoths / Whit Bronaugh

Saving the Seeds (David Attenborough clip on acacias and elephants)

Saturday, September 14, 2013

Endless Forms Most Wonderful

It's time, as the old song says, to accentuate the positive. My last couple of posts took a pretty jaundiced view of the living world, focusing on some of its more ghastly creatures. They're out there, but I don't want to dwell on them too much. Nature has produced plenty of wonder and beauty, too. What's most wondrous to me is the diversity of life--the amazing variety of ways to be a living organism. There are nine-pound crabs that climb trees but can't swim, and spiders that live their whole lives under water, wearing a web-bubble full of air. Bacteria flourish under Antarctic ice, and algae turn snowfields pink high in the mountains. In 1995, scientists found a creature that lives only on the mouth bristles of lobsters. I'm convinced you could study life on Earth for a thousand years and and never run out of surprises.

Life has been evolving for at least 3.5 billion years, creating millions of different species, each with its own unique--and often completely astounding--way of getting by in the world. The best estimates put the number of species on Earth today at around 8.7 million, and the ones living today are just a small percentage of all the species that have ever lived. The earth has seen entire dynasties of living organisms rise, diversify for tens of millions of years, and finally go extinct.

Our species, then, is a single living branch on an ancient tree; one of mllions of other branches. Before I talk about some of the weirder branches, it's worth mentioning a couple of things about the tree's major limbs, because our understanding of those has changed a lot in the last 50 years or so. There's still a lot of misunderstanding out there--lots of people still think you can classify every living thing as a plant, an animal, or a microbe. It's not that simple.

Early taxonomists like Linnaeus classified the natural world into three kingdoms: animal, vegetable, and mineral. Linnaeus classified living things using a hierarchy of categories (kingdom, phylum, class, etc.). One kingdom includes multiple phyla, which themselves include multiple classes, and so on. This system can be represented as a branching tree, but Linnaeus lived before Darwin, so he thought of it more as an organizational chart than a genealogical tree. In the mid-1800's, though, scientists started thinking of living things changing and diversifying over time, and Darwin explained the basic mechanism by which that happened. The tree of life turned out to be a true family tree.

The more biologists learned about the tree of life, the more complex it got. Microscopic organisms were given their own kingdom, Protista, as in this 1866 diagram by Ernst Haeckel. Then people realized that life has even broader divisions than kingdoms. Two of the deepest branches in its tree are between prokaryotes--simple cells with no nucleus, like bacteria--and eukaryotes, whose cells are more complex, and nucleated. Then prokaryotes themselves were found to contain two distinct groups: bacteria, and another kind of microscopic organism called archaea. Fungi turned out not to be a kind of plant, but an entirely separate kingdom, more closely related to animals. 

Today, most biologists divide the tree of life into three domains: Bacteria, Archaea, and Eukaryotes, as in the tree below. Each of these domains has deep divisions that correpond to kingdoms. Animals, plants, and fungi are still considered kingdoms within the eukaryotes, but so are other groups of eukaryotes. Single-celled eukaryotes like amoebas, giardia, and euglena are informally referred to as protists, but that's just a term of convenience, not a real biological group. Some non-animal/plant/fungi eukaryotes, like kelp, are multicellular and big enough to form underwater forests.
From Wikipedia
Now let's get into the fun stuff--the amazing diversity of lifestyles in nature. As animals, we get our energy and basic building blocks (organic molecules) by eating other organisms. Plants, of course, make their living in a totally different way. They get energy from the sun, and then use it to assemble their own organic molecules from scratch. Most people figure that since plants grow out of the dirt, they must be made of dirt. But they aren't. Soil just provides minerals and other nutrients. If you weigh the soil in a pot, then grow a five pound plant in it, and then weigh the soil again, you won't find much difference before and after. Plants literally build themselves out of air and water, using sunlight. Carbon dioxide in the air provides the carbon that forms the backbone of organic molecules. This trick, of course, is called photosynthesis, and it makes life possible for most living things--even the ones, like us, who can't do it. But plants didn't invent photosynthesis. Bacteria learned it long before plants existed, and so did many single-celled protists (some of which hedge their bets and eat other organisms too). 

Some bacteria and archaea get by in more exotic ways. Many can build their own organic molecules without light, using energy from chemicals like sulfur, iron, and even ammonia. Some of these weird organisms support ecosystems that grow in total darkness, around boiling volcanic vents at the bottom of the sea. There they form symbiotic relationships with seven foot tubeworms, who shelter them inside their bodies. Not how I would want to live, but it works for them.

Unexpected symbioses like that are common. Lichens are a symbiotic amalgam of algae and fungus. Termites and cows rely on bacteria in their guts to digest cellulose. Figs need tiny wasps inside their fruits in order to reproduce, which is why some vegans and squeamish biology majors won't eat figs. The bobtail squid of Hawaii harbors symbiotic bacteria that allow it to glow in the dark. Kudzu, soybeans, and alders develop nodules on their roots to house bacteria that help them use nitrogren. 

In plants and protists, photosynthesis itself is based on an ancient symbiosis. Chloroplasts, the photosynthetic cellular organs inside their cells, originated as bacteria that took up residence inside other organisms. Sometimes this process happened twice. For example, red agae is a kind of seaweed that isn't related to plants. Once upon a time, a single-celled ancestor of red algae engulfed photosynthetic bacteria and gained the ability to photosynthesize. Later, other eukaryotes called chromealveolates engulfed the red algae cells, creating a double-layer of internal symbiosis. They went on to form a major lineage of eukaryotes, which include several kinds of algae, as well as kelp, diatoms, and the parasites that cause malaria. It's a family with diverse interests. The red algae, meanwhile, formed several multicellular lineages, some of which get hardened with calcium and build reefs alongside corals (which are colonial animals).

It's a strange, unexpected world out there. Think of the amazing variety just among the plants. There are plants in the desert called living stones that avoid herbivores by looking like rocks. Here in Louisiana I see resurrection ferns along the limbs of live oak trees. They get their name because they look stone dead when it's dry, but then they have a green resurrection as soon as it rains. The titan arum of Sumatra produces a flower that can be ten feet tall. It's pollinated by flesh flies and carrion beatles, which is why it smells like something crawled into it and died. 

Plants have been co-evolving with insects for millions of years, forming some truly astounding relationships. Bee orchids get pollinated by tricking bees into trying to have sex with their flowers. Spider orchids trick wasps into stinging them. Darwin's orchid, like many flowering plants, bribes insects with nectar. But it keeps it at the bottom of a tube that can be over ten inches long. When Darwin saw it, he predicted that a moth would be found with a 10-inch proboscis, long enough to reach the nectar. The moth was discovered years later, after Darwin was dead.

The organisms that most capture the human imagination are our fellow animals. They're a stunningly diverse bunch, from lowly sponges and hideous tapeworms to lions, tigers, and bears. Animals have some strange lifestyles and behaviors themselves. There are male jumping spiders that flare their backsides like peacocks and wave their arms in the air to woo females. Scallops, which look like flattened clams, can swim away from predators by flapping the two halves of their shell together. Water beetles breathe through their rear ends (and some turtles can do the same thing). The boxer crab, also known as the pom-pom crab, is so-named because it holds a tiny, stinging sea anemone in each of its pincers. When threatened, it gives its opponent an anemone sandwich. Sometimes nature is dowright hilarious.

Our own group of animals, the vertebrates, is also full of surprises. Consider the world of fish. The first surprising thing about them is that they aren't a coherent biological category. Cartilaginous fish like sharks and rays are very different from bony fish like catfish or bass, and those, in turn, are different from lobe-finned fish like coelacanths (famous "living fossils") or lungfish. Lobe-finned fish were the ancestors of four-legged vertebrates, which means a lungfish is more closely related to us than it is to a shark. 

Fish have been around long enough to evolve into some truly weird forms. The gulper eel is basically a giant set of jaws with a tail, and it can swallow things much larger than itself. The tip of its tail glows, too, in case it wasn't freaky enough already. The eyelight fish, one of several kinds of flashlight fish, has bioluminescent lights under each eye. The barreleye has eyes on barrel-shaped stalks, enclosed inside a transparent dome on its head. The deep sea anglerfish is famous for the glowing lure that hangs from its forehead, and for being butt ugly. But the weirdest thing about it is its sex life. Male anglerfish are tiny, and when they find a female they attach themselves to her permanently, and then sort of dissolve on the inside, basically becoming a bag of gonads. Some females have five or six of these dangling off of them. Who says romance is dead?  

Then there's the flying fish, famous for leaping out of the water and gliding for hundreds of feet on wing-like fins. This is so well-known it's easy to forget how odd it is--this is a fish we're talking about here. But gliding isn't unusual among vertebrates. It's evolved several times. Wallace's flying frog flares out its fingers and toes and glides on the membranes in between. Flying lizards flare out their ribcages as wings. Flying snakes flatten their bodies, launch themselves out of trees, and glide by slithering through the air. Among the mammals are the flying lemurs and flying squirrels. They both glide with flaps of skin between their front and back legs, but they aren't closely related, which means their abilities evolved separately. Gliding must be a handy trick.

Gliding is just one of many weird, wonderful traits among animals. Possibly the most amazing of all, for my money, is this: baleen whales--the largest animals that ever lived--have an expandable mouth, like a pelican. They can hold more than their weight in water in their mouth...and some of them weigh nearly 200 tons. They take in all that water, strain krill out of it, and spit it out again. These behemoths are out there doing that right now, in oceans around the world. 

That kind of fact boggles my mind. But it's just one of many such facts about animals. And animals are just a part of a huge, diverse tree of life, and even life is just one aspect of the natural world. It's easy to get carried away talking about all the wonders of nature, and that's just what I've done in this long, rambling post. I can't help it. It's an astonishing world out there.

__________________________________________________

The frog and tree pictures above are both by the German biologist Ernst Haeckel. If you haven't seen his natural history illustations, I urge you to check them out